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Abstract 

 
We investigate several exercises from the two fundamental disciplines of applied mathematics. We process the exercises 
in the software applications Maple and MATLAB: the exercises in Maple are from numerical analysis and the exercises 
in MATLAB are from statistics. For each example, we provide two ways of solution (not two different solutions) and 
try to explore their advantages and disadvantages for teaching students of university technical fields (undergraduate 
level). We pit solutions against each other: the first way of solution uses pre-prepared functions (robust built-in 
commands) for fundamental methods of given disciplines; in the second way of solution we have to “program” these 
methods by using sequences of fundamental commands. In the process, we theoretically establish parameter of 
education that needs to be carefully balanced for students’ success. However, we are not only thinking about how well 
the students pass the subject if we use this or that way of solution. We also want to reflect on what  we expect and what 
it is expected that students should learn. Which of the ways will provide them with a more “suitable” type of education 
for their further development? It seems that with advancing technologies (constantly expanding computing power, the 
current boom in AI) some of our positions about teaching in software applications need to be re -evaluated – is it really 
so, or is it just an illusion and the fundamental practices remain valid and they just adapt to new environments? 
Specifically, for us: Is it still necessary to understand what applications do, or is it enough to remember how to interpret 
their various outputs? Finally, let us note that we also pay attention to how challenging it is, even for us teachers, to 
find out what a given robust command actually calculates. 
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1. Introduction 

 
We teach applied mathematics, especially numerical analysis and statistics. We dare to say that these mathematical 

disciplines are essential for a large number of university technical fields, the education process for national defence in not an 
exception, see [1] for an idea of what is included; however, we don't say that technicians are proficient in these disciplines. 
According to our experience, even long-solved fundamental problems are constantly being solved all over due to the lack of 
connection between abstract results and procedures used in practice. This may stem from the inappropriate approach of us, 
the teachers of these disciplines, to teaching. 

Numerical analysis and statistics inherently need suitable software for teaching, but, and this is often forgotten, 
students need to have mastered the basics of the relevant “non-numerical” discipline of mathematics (the fact that students 
first pass some basic course does not often guarantee this). 

Many articles have already been devoted to the teaching of mathematics on computers and their benefits are also 
often emphasized [2]. However, similarly to how calculators changed our approach to logarithmic tables, new technological 
means demand readjustment of current teaching methods, see [3]. However, it is natural that there is not one correct approach 
to teaching but a spectrum of possibilities, see [4,5,6]. And yet we could not find a scientific literature that investigates how 
necessary it is for students to understand the principle of built-in commands. And this very question will be studied in the 
following text: Is it necessary for students to have a clear understanding how any given command works?  

Considering the focus of teaching at our school we only focus on how to perform some fundamental methods of 
numerical analysis and statistics in software applications (in the teaching process). Simply put, we are trying to explore the 
advantages and disadvantages of using pre-prepared functions (robust built-in commands) for fundamental methods of given 
disciplines over custom “programming” of these methods (just by using sequences of fundamental commands). 
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Depending on which way of solution we lean towards, it is more or less important, which application we use and 

also it is more or less important, if we use such application, which then professionals in that given technical field using. A 

related topic is already addressed in the older article [7], which notes the shift in the role of the computer in teaching 

mathematics: from an instructional tool (e.g. displaying graphic outputs; see also [8]) to a programming tool. Let us also note 

that we dealt with the categorization of the way software applications are used in the teaching process in our texts [4] and 

[5]. Further, let us emphasize that by pre-prepared functions we always mean functions built into an application, not finished 

user-made functions (scripts). Given this, we will also consider how important it is that we know exactly what the pre-

prepared function calculates, i.e., we could program it by hand in any suitable software if needed, but we don't need to know 

precise implementation to the used application. 

 

2. Methods of Investigation 

 

 We focus on pre-prepared functions in the applications Maple (for numerical analysis) and MATLAB (for statistics). 

We examine what a specific built-in function actually calculates; moreover, we will see how difficult it is, or it is not, to figure 

it out. Note that in [9] it is examined how Maple calculates the sum of an infinite series and how this can be useful for students. 

Finally, we will also provide an alternative to the pre-prepared built-in functions: the hand-written code to obtain the same result 

that the built-in functions provide. In fact, programming the method by hand is often the only practical way to find out what a 

built-in function actually calculates.  

We can look at the matter from another point of view (more global), in which writing scripts goes hand in hand with 

the use of pre-prepared functions (both built-in and user-made). When solving a more comprehensive problem in practice 

(for students, for example, when writing a final thesis), it is inevitable that the student will look for solutions (user-made 

functions, a solution of the problem using built-in functions, etc.) on various web forums. He either find some existing 

solution or he directly asks. The ability to find and correctly adopt (modify) a solution is absolutely essential today, but be 

careful, we must not confuse this ability with being educated in the subject. If the student does not orient himself in the 

subject and only tries one found foreign solution after another, he will easily make a mistake and come to a completely 

meaningless conclusion, see, e.g., the section “Wrong interpretation of results” from [10]. Unfortunately, due to the described 

secondary nature, there is no time left for teaching how to find and apply foreign solutions (the student has to learn this ability 

himself). Materials (textbooks) with prepared code sequences, on the basis of which students create their code, can be a 

certain starting point for teaching, see [11]. We do not deal with the just-described problem of adopting user-made solutions 

from the Internet in this text, however, it is an important topic that is now even more relevant than before thanks to the rapidly 

growing capabilities of AI. Help from AI could even replace to a certain extent the simple search for solutions on the Internet 

– the question is whether AI is not an even more dangerous source of nonsense than the pure internet searching. 

 

3. Commented Exercises from Numerical Analysis Solved in Maple 

 

 Exercise 1. Let us start with a simple exercise from Maple. For the approximate numerical calculation of definite 

integrals, so-called quadrature formulas are used. Maple has the robust command Quadrature in the package 

Student[NumericalAnalysis]. The command returns the approximate value of the integral corresponding to the selected 

formula type and other selected parameters if output is not set. Students should know from the lecture that, for example, in 

the special case of Newton–Cotes formulas, the interpolation polynomial is integrated, and they should therefore obtain the 

same result by manually entering the integration of the interpolation polynomial. 

 

 

Fig. 1. Solution visualization: a) is more concise and easier for students to implement than the one in b). 
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 The solution in Fig. 1 a) is more concise and easier for students to implement than the one in b). However, there 

may be a problem with setting the parameter view, more precisely, an explanation of why we set it in presented way (the 

command Quadrature itself would set the range on the 𝑦-axis from the minimum to the maximum value of the function f on 

the given interval). With the solution in Fig. 1 b), there will be no doubt about the meaning of the value 1.475730582 and 

what the orange line in the picture is, but even here it will be difficult to tell how the value 1.475730582 relates to the plotted 

graphs. However, in b), it will be “only” for ignorance of the basics of integral calculus; in a) for ignorance of the numerical 

integration. Note that if we wanted to numerically estimate the given integral as accurately as possible, we would use the 

command evalf(If), which uses a very good numerical method. 

 It should be added, that the code produced in Fig. 1 b) is specific to the quadrature formula used. As a consequence, 

the code presented in Fig. 1 b) would be diametrically different for other quadrature formulas. In general, we need to know 

how to determine the nodes and how to calculate the coefficients of the quadrature formula from them. So, it is up for 

consideration whether we require this level of knowledge from students. Additionally, the more code students write, the more 

it depends on how proficient they are with the application; common student mistakes in Maple and how to avoid them can 

be found in [12]. 

 

 Exercise 2. We find the numerical solution of the equation 𝑓(𝑥) = 0 on the interval 〈𝑎, 𝑏〉. We assume that there is 

exactly one root on the specified interval. We use the false position method, to that we construct a sequence {𝑥𝑘}𝑘∈ℕ∪{0}, for 

which it holds 

𝑥0 = 𝑎,     𝑥1 = 𝑏      and      𝑥𝑛+1 =
𝑥𝑚𝑓(𝑥𝑛) − 𝑥𝑛𝑓(𝑥𝑚)

𝑓(𝑥𝑛) − 𝑓(𝑥𝑚)
    for    𝑛 ∈ ℕ, 

where 𝑚 = 𝑚(𝑛) ∈ {0,1, . . . , 𝑛 − 1} is the biggest number such that 𝑓(𝑥𝑛)𝑓(𝑥𝑚) < 0. 

 In Maple we use the command Roots with method = falseposition setting. The assignment of the function 𝑓 and the 

numbers 𝑎 and 𝑏 is given in Fig. 2. We stop the iteration process after five steps, i.e., we have to compute the numbers 

𝑥2, 𝑥3, 𝑥4, 𝑥5 and 𝑥6 (five numbers); we do not choose the stopping criterion and the tolerance – it will become clear later 

why. 

 

Fig. 2. Comparison of the two ways of solution using one method of numerical root search 

 In Fig. 2 notice the blue tables below. Both tables for parts a) and b) have the first five columns exactly the same, 

so our code gives the same results as Maple's built-in procedure. Only the last column is different, but this is an error of the 

built-in procedure, not our procedure. We describe the implementation of the false position method into Maple to understand 

the meaning of the numbers in the tables and to describe why the values in the last columns are different. 

 Each table contains values 𝑎1, 𝑏1, 𝑝1 (𝑛 = 1, first row); 𝑎2, 𝑏2, 𝑝2 (𝑛 = 2, second row); 𝑎3, 𝑏3, 𝑝3 (𝑛 = 3, third row) 

and so on. We match the values with our original sequence {𝑥𝑘}. It holds 



291 

 

 

 

𝑎1 = 𝑥0,     𝑏1 = 𝑥1,     𝑝1 = 𝑥2, 

 𝑎2 = min{𝑥𝑚(2), 𝑥2},     𝑏2 = max{𝑥𝑚(2), 𝑥2},     𝑝2 = 𝑥3, 

𝑎3 = min{𝑥𝑚(3), 𝑥3},     𝑏3 = max{𝑥𝑚(3), 𝑥3},     𝑝3 = 𝑥4     and so on. 

Hence 𝑝𝑛 = 𝑥𝑛+1 for 𝑛 ∈ ℕ, where 𝑝𝑛 is the approximate value of root obtained after 𝑛 iterates (steps). 

 Now we describe (define) relative error from the tables. First note that relative error and tolerance together forms 

one type of stopping criterion for the false position method. Relative error is the number 
|𝑥𝑛+1 − 𝑥𝑛|

|𝑥𝑛+1|
 

for each 𝑛 ∈ ℕ. If tolerance is 𝜀, then the iterating process could be stopped by the stopping criterion 
|𝑥𝑛+1 − 𝑥𝑛|

|𝑥𝑛+1|
< 𝜀. 

 The error when calculating the relative errors in Fig. 2 a) is caused by the fact that the command Roots takes the 

value 𝑏𝑛 instead of the value 𝑥𝑛. The value 𝑏𝑛 is the maximum of the values 𝑥𝑛 and 𝑥𝑚(𝑛) and therefore it is not always the 

required value 𝑥𝑛. Recall that 𝑥𝑛 = 𝑝𝑛−1. Finally, let us note that there is an analogous problem when using absolute error. 

 Now let us focus on the didactic analysis of both ways of solution presented in Fig. 2. If we start to think about how 

the students will handle the presented ways of solution, the first impressions will probably be similar for everyone: method 

b) is difficult to impossible for students. We try to weaken this first impression so that we can even compare the two ways. 

Let us be aware that for the purposes of this article, method b) is as elaborate as possible and also as transparent as possible 

(for us), so that it describes the entire iteration process well, especially the calculation of relative error. Additionally, we 

created a table to match as closely as possible the table returned by the command Roots. It would be enough for students to 

enter the iteration relation in any way and after the calculation of each value also calculate corresponding relative error. 

Furthermore, let us note that the formula for the sequence {𝑥𝑘} seems too unapproachable without graphical interpretation of 

the false position method. Without a graphic idea of the method, all relations seem artificial and technical. 

 For the way of solution in Fig. 2 a) we very often encounter the fact that students have no idea at all what the 

meaning of the table is, and in fact they do not even understand the meaning of the individual rows and values in various 

columns of these rows are. And this despite the fact that we usually want graphic outputs after them (output = plot, output = 

animation) or even a simple output in the form of a sequence {[𝑎𝑘 , 𝑏𝑘]} finalized by the value 𝑝𝑛 (only when tolerance is 

reached). The graphical outputs (that might help especially visual learners in studying) are probably the biggest advantage of 

using the command Roots over writing own code. It would take us incomparably more work to render an image or even 

create an animation than just calculating a few elements of the iterative sequence {𝑥𝑘}. The advantage of solution b) is that 

students will necessarily know how individual values are obtained. We dare to say that if students really independently 

process the calculation of elements of the iterative sequence, they will probably already know their meaning. When creating 

custom cycles, students must, at least in the end, find out where they need to get to. On the other hand, they do not need to 

know much about the meaning (graphical, for example) of the used numerical method. It is worth considering whether for 

students the ability to write their own code that calculate the method is almost as valuable as a thorough understanding of the 

method. Indeed, if student writes functional code, then he has already mastered most of the technical obstacles and 

understanding is already within reach. 

 Exercise 3. In the last demonstration in Maple, we will deal with the numerical solution of ordinary differential 

equations in the form  

𝑦′ = 𝑓(𝑥, 𝑦) 
with the initial condition 

𝑦(𝑥0) = 𝑦0. 
We use the command InitialValueProblem from the package Student[NumericalAnalysis]. Let us note that Maple already 

has the command dsolve in the base, which can also construct numerical solution, but the command InitialValueProblem is 

much more suitable for teaching classical methods (Euler's method, Runge-Kutta methods and so on). However, if we wanted 

to find a high-quality numerical solution to the initial problem 𝑦′ = 𝑓(𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0, we would use dsolve. 

 The syntax of the command InitialValueProblem is fairly easy to read with one major exception, which is the choice 

of method. We specify one particular method as an ordered pair [method, submethod]. If we do not specify submethod, the 

default one for the given setting of method will be used. Each method has its own default value of submethod. In the official 

help for the command, we learn which submethods are preset and what we should set if we want to use different method, 

e.g., for the modified Euler method we have to set method = rungekutta and submethod = meuler. But what we learn in the 

help to a minimal extent (rather not at all) is what is actually calculated for the selected pair – unfortunately, the name of the 

method does not always clearly and unambiguously specify the method (the formula). We can immediately ask ourselves 

whether we really need to know what is being calculated when using the built-in commands, and whether the students need 

to know this. Whatever the answer is, we think that at the very least teachers should have a good idea of what the command 

they are teaching actually calculates. Otherwise, it will easily happen that education in numerical methods will be reduced to 

just learning to alternate different pre-prepared solutions without any inner meaning. 

 To properly describe and analyze all method settings options (all pairs), i.e., to write which method is used together 

with the mathematical formula for calculation, would take at least the length of another article. When pairing the setup of 

pairs (in Maple) with numerical methods supplemented by mathematical formulas, which are e.g. well described in the 

textbook [13, section 7.2], we cannot avoid the fact that we do not program at least a few steps of the method ourselves. In 
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this text, we analyze only one one-step numerical method. Note that we would sweat a lot more with multi-step methods. If 

we were to analyze, for example, the method[adamsbashforthmoulton,step𝑘], which is a multi-step predictor–corrector 

method, we would especially have to match the number 𝑘 with the order of the predictor method and with the number of 

steps of the predictor method, and further with the order of the corrector method and with the number of steps of the corrector 

method. Some of the order numbers and number of steps match, but others differ – of course it depends on the definitions, 

e.g., the meaning of the method order usually differs between the explicit and implicit versions of the method. In addition, 

with multi-step methods, a one-step method must always be used as a starter (to perform the first steps, when we do not yet 

have enough values to perform a multi-step method). Fortunately, several mathematical formulas can be found in the official 

Maple help specifically for this predictor–corrector method, see [14]. 

 In Fig. 3, we only set method = rungekutta. According to the help, it is preset submethod = midpoint. Suppose we 

do not have a textbook at hand where the midpoint method is described; moreover, even in textbook, the method can be 

named differently than in Maple. The midpoint method can be easily found on Wikipedia, see [15]. We immediately see 

mathematical formulas that we can use.  However, we do not know if we want the explicit or implicit version: we assume 

that midpoint in Maple means the more usual explicit version. But beware, below we see “The explicit midpoint method is 

sometimes also known as the modified Euler method,” (in Maple submethod = meuler) a further “Note that the modified 

Euler method can refer to Heun's method,” (in Maple submethod = heun), see [15]. So, are these the same three methods, just 

specified differently, or are some two different? From the wording of the sentences on Wikipedia, we can conclude that the 

midpoint method (midpoint setting) and the Heun’s method (heun setting) are two different methods, and the only ambiguity 

is which one is the modified Euler method (meuler setting). How wrong we would be! To make sure our reasoning is correct, 

let us try using the given formula and see if we get the same result as the one we get using the command InitialValueProblem 

with the method [rungekutta, midpoint], see Fig. 3. 

 

 

Fig. 3. Comparison of the two ways of solution using the midpoint method 

 In Fig 3, by comparison of the blue text with 𝑦(3), we can see that the used methods in a) and b) are different. Even 

the graph in a) clearly says that 𝑦(3) is lesser than 0.5 (ignore the different number of decimal places – the numbers from the 

built-in command are rounded differently for some reason). The graph is definitely one of the biggest advantages of the built-

in command. We can create the graph ourselves, but it is inefficient if we mainly want to teach the numerical method. 

 Let us find out the correct formula for the settting submethod = midpoint. The command InitialValueProblem can 

compare methods. In Fig. 4 we can see that the midpoint method and Heun’s method are the same, therefore try to use formula 

from Heun’s method from Wikipedia [16], the result is in Fig. 4, on the right. 
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Fig. 4. Comparison of the midpoint method, Heun’s method and the modified Euler’s method 

 

Finally, in Fig. 4, we can see that pairs (methods) [rungekutta, midpoint] and [rungekutta, heun] are the same with formula 

used in c) and the pair [rungekutta, meuler] is different method with the formula used in b) in Fig 3. 

 Now we compare the ways of solution. We could already see many advantages and disadvantages from the process 

of searching for mathematical formulas for methods from Maple. Let us just emphasize that if we were not able to write a 

simple cycle for to calculate the values, it would be difficult for us to find our way between the methods; the same applies to 

more complex multi-step methods. This is the clear difference between creating our own solution and strictly using the built-

in command InitialValueProblem. For this reason, the second approach might be better for advanced students that are already 

familiar with Maple and the first approach might serve as an introduction for beginners. In this sense, as teachers, we only 

have to assess where we are already beyond the scope of what we want to teach, and vice versa, what else we would like to 

pass on to students. In fact, highlighting potential errors in the software might leave longer lasting impact on students, where 

they realize not to take everything as granted. Hence, this could lead to enforcement of students’ critical thinking processes.   

 

4. Commented Exercises from Statistics Solved in MATLAB 

 

Exercise 4. We will now compare the use of the built-in function and the use of hand-written code using an example 

from mathematical statistics. Consider the random samples 𝑋1, 𝑋2, … , 𝑋𝑘, where 𝑘 ≥ 3, 𝑘 ∈ ℕ. Note that each random 

sample is a random vector, i.e., the vector of random variables with the same distribution of probability (briefly just 

distribution). The assignment of this exercise is to test the null hypothesis 

𝐻0:  med1 = med2 = ⋯ = med𝑘 , 
where med𝑖 is the median (50% quantile) for the distribution of 𝑋𝑖 for each 𝑖 ∈ {1,2, . . . , 𝑘}, against the alternative hypothesis 

𝐻1: 𝐻0 does not hold. To test 𝐻0 we use the Kruskal–Wallis test, which is well-known nonparametric test, see [17]. In order 

to perform this test, we must additionally assume that the random samples are independent.  

Consider the random samples 𝑋1, 𝑋2, 𝑋3, i.e. 𝑘 = 3, and their realizations 
 𝑥1 = (55, 54, 58, 61, 52, 60, 53, 65),
 𝑥2 = (52, 50, 51, 51, 49),                    

 𝑥3 = (47, 53, 49, 50, 46, 48, 50).       
                                                                  (1) 

Further denote 𝑛1 = 8, 𝑛2 = 5, 𝑛3 = 7, which are dimensions (ranges) of  𝑥1,  𝑥2,  𝑥3, respectively. Note that these values 

are usually retrieved from a file, but the values in Fig. 5 (a) are entered directly for transparency of this article. Note that the 

numerical values in (1) were taken from the exercise for Kruskal–Wallis test in [18, page 229]. 

First, we describe the use of the robust built-in command kruskalwallis from MATLAB. The input parameter 

of the command is the matrix in MATLAB of the type 8 × 3 (having 8 rows and 3 columns) containing the realizations 

𝑥1, 𝑥2, 𝑥3 as its columns, missing positions are filled with the symbol NaN (not a number). As teachers, we recommend that 

students use a comprehensive output in the form of a table, see Fig 5, variable tbl. The test can be easily evaluated by using 

the so-called 𝑝-value, which is listed in the last column in the row ‘Groups’. It holds 𝑝 = 0.0012 <  0.05 = 𝛼, therefore at 

the significance level 𝛼 we reject the null hypothesis 𝐻0 in favor of the alternative hypothesis 𝐻1 (this is the formal conclusion 

of the test). Thus, the testing by using the command kruskalwallis is quick and effortless. However, we as teachers 

have to think about whether this is enough for us, or whether we will want more from the students. We usually want to teach 

things at least in such depth that the students are forced to understand at least roughly “what it is about” and not just repeat 

teacher's solution. If we decide that we want to teach the internals of the test as well, we must prepare that the robust built-in 

commands will return different values than the ones we calculate using a sequence of elementary commands according to the 

formulas from the textbook. The ultimate solution would be to not use the robust command at all and write everything 

manually. In Fig 5 (b). we present the calculation of 𝑝-value, which returns the exactly same number as the command 

kruskalwallis from MATLAB. Let us strongly emphasize that getting the same value was difficult. The main problem 

here and also elsewhere is that the official documentation for the command kruskalwallis, see [19], usually does not 

contains explicit formulas for the calculation of the values of the output. Another problem was that the textbook we are using, 

see [18], does not contain the calculation correction, which in the end was the only one that really caused the difference 

between our manually obtained value and the value obtained from the command kruskalwallis.  
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(a) (b) 

Fig. 5.  Research calculation description: (a) the values are entered directly for transparency; (b) the calculation of p-value, 

which returns the exactly same number as the command kruskalwallis from MATLAB. 

 

As the code in Fig. 5 (b) is not transparent enough, we describe the calculation in more detail using mathematical 

formulas, see [18]. Assuming we already have the 8 × 3 matrix described above, let us denote it by 𝑿 (the first, second and 

third columns are  𝑥1,  𝑥2 and  𝑥3, respectively, not a number otherwise). All 𝑁 = 𝑛1 + 𝑛2 + 𝑛3 values must be sorted, 

regardless of which sample they belong to. We create the matrix 𝑹 such that we replace numerical values in 𝑿 by their order; 

the order will be described later. The matrix 𝑹 has the successive columns 
 𝑅1 = (16, 15, 17, 19, 11.5, 18, 13.5, 20),

 𝑅2 = (11.5, 7, 9.5, 9.5, 4.5),                       

 𝑅3 = (2, 16.5, 4.5, 7, 1, 3, 7).                     
 

Let us describe the order of the repeating values. The value 50 is repeated three times and these are the seventh, eighth and 

ninth positions in the simple sorted vector of all numerical values of 𝑿. However, the order of 50 for the test is 7; it is an 

arithmetic mean of theirs positions. The realization of the test statistic 𝑄, see [18], is 

𝑞 =
12

𝑁(𝑁 + 1)
∑
𝑟𝑖
2

𝑛𝑖
− 3(𝑁 + 1)

𝑘

𝑖=1

= 13.331,                                                      (2) 

where 𝑟𝑖 is the sum of the values in the vector 𝑅𝑖 for 𝑖 ∈ {1,2,3}. The 𝑝-value is given by the relation 𝑝 = 1 − 𝐹(𝑞), where 

𝐹 is the distribution function of the Pearson 𝜒2 distribution with 𝑘 − 1 degrees of freedom. By the command 1-

chi2cdf(q,k-1), where k=3 and q given by the formula (2), we obtain 𝑝 = 0.0013. The result 𝑝 = 0.0013 differs from 

that in Fig. 5. We must use the correction, which is described, for example, in [19]. Let {𝑐1, 𝑐2, . . , 𝑐𝑙} be the set of all numerical 

values that appear more than once in the matrix 𝑿. The correction term is 

𝑐 = 1 −
∑ (𝑡𝑖

3 − 𝑡𝑖)
𝑙
𝑖=1

𝑁3 − 𝑁
= 0.994,    

where 𝑡𝑖 is the number of repetitions of 𝑐𝑖 for 𝑖 ∈ {1,2, . . . , 𝑙}. Clearly, instead of the set {𝑐1, 𝑐2, . . , 𝑐𝑙} we can take the set of 

all values of 𝑿, since 𝑡3 − 𝑡 =  0 if 𝑡 = 1. For example, if 𝑐1 = 49, then 𝑡1 = 2, since the value 49 appears once in 𝑥2 and 

once in 𝑥3. Finally, the 𝑝-value is 𝑝 = 1 − 𝐹(𝑞 𝑐⁄ ) = 0.0012237. Note that if all the values in the input realizations are 

unique, then the correction term 𝑐 is equal to one 1, and the values 

𝑝 = 1 − 𝐹(𝑞)      and      𝑝 = 1 − 𝐹(𝑞 𝑐⁄ ) 

are the same. 

Finally, let's emphasize that we would never want students to reveal any “secret” formulas for built-in commands. 

They are not really secret, since MATLAB has accessible source code for each command, but it is indecipherable for an 

ordinary user (non-programmer). On other hand, if we know the formulas, it is not that hard to construct the matrix 𝑿 (in 

MATLAB) or calculate realization 𝑞 (in MATLAB), see Fig. 6. Each teacher should weigh the pros and cons of both ways 

of solution; and maybe select some ideal mix of the presented ways. We have to make sure that the student is not left 

untouched. 

 

5. Conclusions 

 

We solved several exercises in two ways (but using the same method), one way of solving usually relied on one 

robust built-in command for the used method, and in the other way the method was applied more explicitly by using several 

elementary commands. Based on these two ways, two corresponding directions of teaching can be distinguished. It could be 
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beneficial to examine how teachers of these and related mathematical disciplines approach these directions. The easiest 

implementation would probably be using a questionnaire (a survey). The respondents (teachers) would first familiarize 

themselves with the given exercises in order to have a good understanding of what is involved. Then they would be asked 

several questions in which it would find out how they teach and which of the partial options (from both ways of solution) 

seems more appropriate or correct to them. Overall, we suggest using the first approach for broader overview of methods and 

the second approach for deeper understanding. 

Finally, let us point out that the requirements for military students can differ as opposed to civilian students. 

Furthermore, our results are theoretical in nature and empirical study might be necessary before practical implementation.  
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