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Abstract  

 

In this paper, we investigate the predictive estimates of the model which at the initial time interval describes a slower 

population growth, and later turns into a model with a rapid growth of such a population. For considered problem, with 

unknown initial conditions and parameters of differential equations, however for a known number of persons in the population 

at certain moments of time, we obtain the predictive sets at a given time under certain conditions and substantiate the formulas 

for calculating the minimum and maximum number of persons in the population. 
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1. Introduction  

 

Mathematical models of population processes provide a framework for understanding the dynamics of populations 

over time. These models utilize mathematical equations to describe birth rates, mortality rates, immigration, and emigration, 

among other factors [1], [2]. By incorporating variables such as carrying capacity and environmental influences, these models 

can simulate the growth or decline of populations under various conditions, aiding in predicting future trends and informing 

decision-making in fields such as ecology, epidemiology, and economics. 

In population processes, uncertainties manifest in various forms [3], including unknown parameters, which refer to 

incomplete knowledge about factors influencing population dynamics such as birth rates or mortality rates. Furthermore, 

error in observations introduces uncertainty [4], as inaccuracies or limitations in data collection methods can distort our 

perception of population trends, complicating efforts to accurately model and predict population behavior.  

Population models with a fuzzy structure are also insufficiently studied. This type of uncertainty has been studied 

in works [5] – [7]. 

Mathematical models for describing population processes can take various forms, each tailored to capture specific 

aspects of population dynamics. Here are some different types of mathematical models commonly used: 

Agent-Based Models: In agent-based models, populations are simulated as collections of individual agents, each 

with its own characteristics, behaviors, and interactions. These models are useful for capturing heterogeneity within 

populations and exploring emergent phenomena arising from individual-level interactions. 

Spatial Models: These models incorporate spatial dimensions to analyze how population processes vary across 

geographical regions. They are valuable for studying patterns of migration, population distribution, and the spread of 

infectious diseases. 

Stochastic Models: Stochastic models introduce randomness into population processes, acknowledging inherent 

variability and uncertainty. They are particularly useful for studying small populations, rare events, or systems subject to 

random fluctuations.  

 © 2024 The Authors.  

Peer-review under responsibility of General Jonas Žemaitis Miltitary Academy of Lithuania and University of Defence, Czech Republic 
 

mailto:oleksandrnakonechny@knu.ua


418 

 

 

 

Nonlinear Differential Equations Models: Nonlinear differential equations are powerful tools for modeling 

population processes, allowing for a more realistic representation of complex dynamics such as feedback mechanisms, 

saturation effects, and interactions between different population groups. 

We propose to use the model, which at the initial time interval describes a slower population growth, and later turns 

into a model with a rapid growth of such a population. 

Initial Phase of Slower Population Growth: In the initial time interval, the population model may exhibit 

characteristics of slow growth. This phase could be influenced by factors such as limited resources, environmental constraints, 

or low reproductive rates. For example, a population may initially have a small number of individuals, undergoing gradual 

growth as individuals reproduce and the population expands to fill available niches. During this phase, the population growth 

rate may be moderate, and the population size increases steadily over time. 

Transition to Rapid Growth: As the population approaches a critical threshold or experiences changes in its 

environment, it may undergo a transition to rapid growth. This transition could occur due to various factors, such as favorable 

environmental conditions, increased availability of resources, or changes in reproductive behaviors. For example, if a 

population's predators decline in number or if abundant food sources become available, individuals may experience reduced 

mortality rates or increased reproductive success, leading to accelerated population growth. This transition often involves 

nonlinear dynamics, where small changes in conditions can trigger disproportionately large responses in population growth 

rates. 

Predictive estimates from a system of nonlinear differential equations are essential for understanding the dynamics 

of population growth, particularly when the model depicts transitions from slower to rapid growth phases. By providing 

insights into future trends and potential impacts [8], [9], predictive modeling informs policy, management, and planning 

efforts aimed at promoting sustainable development and addressing the challenges associated with population growth. 

In this article, we explore modeling population processes with dynamics transitioning from slow to rapid using 

nonlinear differential equations to describe the processes. For each type of process behavior, a specific equation with 

parameters and initial conditions is proposed. We will also propose a method for obtaining predictive estimates of the 

dynamics of such models. 

 

2. The Mathematical Background  

 

Today, a significant number of publications are dedicated to the study of the behavior of dynamic systems. Such 

interest is caused by the variety of applications to real processes that are described using the mathematical apparatus of 

dynamic systems. The information spreading in social networks [10], the change in the number of patients during epidemics 

[11], the dynamics of the number of people with stress syndrome [1], [12] can be modeled with the help of hybrid dynamic 

systems. The most common models, which are studied, for example in [13] – [17], are logistic or more generalized Volterra 

models. With rapid population growth, it is recommended to use Gompertz models [18-22]. Given the known initial 

conditions and parameters of the models, such an analysis is reduced to solving Cauchy problems for linear or nonlinear 

differential equations.  

 In the case when the initial conditions or parameters of the models are unknown and belong to certain sets, it is not 

possible to obtain accurate predictive estimates, which forces us to look for the predictive sets at a given time under certain 

conditions. With unknown initial conditions and parameters of differential equations, however, for a known number of persons 

in the population at certain moments of time, formulas are given for calculating the minimum and maximum number of persons 

in the population. 

 

3. Main Results  

 

 Let functions 
1( )x t   and 

2 ( )x t  be solutions of the system 

 

1

1 1 1 1 0 1

1 1 2 1

2 2

2 2 1

( ) ( )( ( )), (0) , 0 ,

( ) ( ),

( )
( ( ) ( ) ( ) ln ) ( ), .

dx
t x t N x t x x t t

dt

x t x t

dx x t
b t u t t x t t t T

dt N





= − =  

=

= +  

 (1) 

Assume that the functions 
1 2( ), ( ), ( )t t u t   are integrable with the square on the corresponding intervals, and a 

function ( )b t  is continuous on 
1[ , ].t T   

 

Proposition 1. Equation system (1) has a unique solution that is continuous and differential almost everywhere 

(a. e.). 

Proof. Without limiting the generality, we will assume that 1.N =    
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Let’s put 11

1 1

1

( )
( ) 1 (1 ( )) ,

1 ( )

x t
t x t

x t
 −= = − + −

−
 

2 2( ) ln ( ).t x t =  Functions 
1( )t  and 

2 ( )t  are differential a.e. and 

almost everywhere satisfy the equations   

 

11

1 1 1 1

1 0

( )
( ) ( ), (0) 1 (1 (0))

(0) 1 0 ,

d t
t t x

dt

at x and for x N


   −= = − + −

  

 

(2)

 

1

2 1 1 1 1 1( ) ln ( )(1 ( )) ,t x t x t −= −  

2

2 2( ) ( ) ( ) ( ).
d

b t u t t t
dt


 = +  

We can write the solution of system (2) in the form 

1 1 1 1

0

( ) (0)exp ( ) ,0 ,

t

t d t t    =    

1 1

2 2 1 2 2( ) ( ) exp ( ) exp ( ) ( ) ( ) ,

t t t

t t

t t d s ds b u d


        = +     

therefore, the solution of system (1) is functions 1

1 2 2

1

( )
( ) , ( ) exp ( ).

1 ( )

t
х t x t t

t





= =

+
 □ 

Further, let 
0x  be an unknown value that belongs to interval 

0 0[ , ],x x− +  where 
0 0,x−   

0 1.x+     

Let also 
1( )kx s  be the given values with errors  , 1,kv k m=  at the points  

1 2, ,..., ms s s ,  
1 2 10 ... ms s s t      with 

some value 
0 0 0[ , ]x x x− + .  Also assume that we observe some given values  

1( ) , 1, ,k k ky x s v k m= + =   and .k k kv v v− +   

 

Let us introduce the set  0 0 0 0 1: , ( ) , 1, ,y k k k kG x x x x v y x s v k m− + − +=    −  =  and also the sets (1)

yG  and (2)

yG  

 (1)

1 0 0 1( , ) : , ,y y mG x t x x G s t t=     

 (2)

2 1 1 0 0 1( , ( , )) : ,y yG x t x t x x G t t T=    . 

The sets (1)

yG  and (2)

yG  are called the sets of predictive estimates for values
1( )x t  and 

2 ( )x t , respectively.  

 

Proposition 2. The set 
yG  has the form  

0 0 0 0[ , ] [ , ] [max( , ),min( , )] [ , ].yG x x x x     − + − + − +=  = =  

Proof. From the inequality 
1( )k k k kv y x s v− + −  , according to the relation 1

1

( )
( )

1 ( )

k

k

k

s
x s

s




=

+
,  we obtain such 

inequalities  

1( ) ,
1 1

k k

k

k k

y y
s

y y


− +

− +
 

+ +
 

where 
k k ky y v− += − , .k k ky y v+ −= −  

Since 1 0 1

0

( ) exp ( ) ,
ks

ks x d   =   then for 
0x  the ratios 

0 , 1,k kx k m − +  =  are valid, and here 

1

0

exp ( ) ,
1

ks

k

k

k

y
d

y
   

−

−

−

  
= − 

+   
   1

0

exp ( ) .
1

ks

k

k

k

y
d

y
   

+

+

+

  
= − 

+   
   

In this way, we get that 
0 [ , ],x    

11
max , min .k k

k mk m
   − +

  
= =   □ 

 

Consequence 1. The sets (1)

yG  and (2)

yG  have the form (1)

1 1[ , ]yG  − += , (2)

2 2[ , ],yG  − +=  where 

1 1 1 1( , ), ( , ),x t x t   − − + += =  
2 2 1 1( , ( , )),x t x t − −=   

2 2 1 1( , ( , )).x t x t + +=    

 

Suppose that the function 
1( )t  is unknown and belongs to the set  
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1

2 2

1 1 1

0

: ( )( ( ) ( )) 1 ,

t

q t t t dt  
  

 = −  
  

     (3) 

where 
1( )t  is a well-known function integrable with the square, the function 2 ( )q t  is continuous on 

1[0, ]t  and such that the 

following inequality holds: 2 2( ) 0q t q  .  

We put that 
0 0 0[ , ].x x x− +  Let us denote by  

 0 1 0 0 0 1 1( , ) : , , ( ) .y k k k kx x x x v y x s v − + − + =     −   

 

Definition 1. An interval 
1 1[ ( ), ( )]x t x t− +  is called a set of predictive estimates for the values 

1( )x t , where 

0 1
1 1 0 1

( , )
( ) min ( , , ),

yx
x t x t x


−


=  

0 1

1 1 0 1
( , )

( ) max ( , , ),
yx

x t x t x


+


=  

1 0 1( , , )x t x   is the solution of system (1) at the initial value 
0x  

and the function 
1 . Similarly, for the predictive interval 

2 1 1 2 1 1[ ( , ( )), ( , ( ))]x t x t x t x t− +  is called a set of predictive estimates 

for the values 
2 ( )x t . 

 

Proposition 3. The following equalities  

 1 1

1 1 1 1( ) 1 (1 ( )) , ( ) 1 (1 ( )) ,x t t x t t − − − + + −= − + = − +  (4) 

hold, where 
1 0 1 1 0 1( ) exp ( , ), ( ) exp ( , ),t L x t L x   − − + += =  and 

0 1 0 1( , ) min ( , ),
y

L x L x −


=  

0 1 0 1( , ) max ( , ),
y

L x L x +


=  

0 1 1

0

( , ) ln (0) ( ) .

t

L x d    = +   

Proof. Since 11

1 1

1

( )
( ) 1 (1 ( )) ,

1 ( )

t
x t t

t






−= = − +
+

 where 
1 0 1( ) exp ( , ),t L x =  then this representation yields 

equalities (4). □ 

 

Remark 1. Since 
0

(0)
,

1 (0)
x




=

+
 then the set 

y  can be written as 




0 1 0 0 0 1

0 1

( , ) : , ,

( , ) , 1, ,

y

k k kL k m

     

   

− +

− +

 =   

  =
 

where 0 1 0 1

0

( , ) ( ) ,
kt

kL d     = +   
0 ln (0), =  0

0

0

ln ,
1

x

x


−

−

−
=

−
 0

0

0

ln ,
1

x

x


+

+

+
=

−
 ln ,

1

k

k

k

y

y


−

−

−
=

+
 ln .

1

k

k

k

y

y


+

+

+
=

+
 

 

Remark 2.  In order to find predictive sets for the value ( )x t , one needs to find the minimum and maximum value 

of a linear functional 
1 0 1 0 1

0

( , ) ( )

t

L d     = +   on the convex and closed set 
y . 

 

Proposition 4. Let 
0x  and 

1  belong to the set 
y , the functions ( ), ( )b t u t  and 

2 ( )t  are given. Then the predictive 

set for the value 
2 ( )x t  as 

1t t T  ,  has the form 
2 2[ ( ), ( )],x t x t− +  where 

2 ( )x t−  and 
2 ( )x t+  are found from the solution of 

system (1) at 
2 1 1 1( ) ( )x t x t−=  and 

2 1 1 1( ) ( )x t x t+= , respectively. 

The proof of this statement follows from the representation 
2 2( ) exp ( )x t t=  and equality 

2 2 2 2( ) exp ( ), ( ) exp ( ),x t t x t t − − + += =  where  

1

2 1 1 2( ) ( ) exp ( ) ( ),

t

t

t x t d t    = +   

2

0

( ) exp ( ) ( ) ( ) .

t t

t s ds b u d


    =    

 

Remark 3. If the predictive sets for the values 
1( )x t  and 

2 ( )x   are given in the form of intervals 
1 1[ , ]x x− +  and 

2 2[ , ],x x− +  then the guaranteed predictive estimates and guaranteed predictive errors are calculated by the formulas (see, for 

example, [21])  
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1 1
ˆ ( ), ( ), 1,2.

2 2
i i i i i ix x x x x i+ − + −= + = − =  

 

Definition 2. Let 
y

−  and 
y

+  be such sets that such sets connected by embedding
y y y

− +     . The predictive sets 

for 
1( )x t  and 

2 ( )x  , corresponding to the sets 
y

−  and 
y

+  are called the lower and upper predictive sets.  

Suppose that  
2 2

0 1 0 0( , ) ( )F      −= − +  

1

2 2 2 2

1 1 0 1

10

( ( ) ( )) ( ) ( ( , ) ) ,

t m

k k k

k

t t q t dt L      −

=

+ − + −  

where 1 1 1 1
0 0 0 0 0 0 02 2 2 2

( ), ( ), ( ), ( ).k k k k           + − + − + − + −= + = − = + = −  

Further, consider the sets  0 1 0 1( ) ( , ) : ( , ) , 1,2.i iF i      =  =       

Let's choose 
1  and 

2   in such a way that 
1( ) y    and 

2( ) .y    We need to find the lower and upper 

prediction sets in this case. 

Let's introduce a notation 
0 1

0 0 1
,

ˆ ˆ( , ) min ( , ).Arg F
 

     First, we show that the following statement holds. 

 

Proposition 5. This equality holds 

0 1 0 1 0 1
ˆ ˆ ˆ ˆ( , ) ( , ) ( , ),F F F       = + − −  

where 

1

2 2 2 2 2

1 0 0 0 0

10

( , ) ( ) ( , ) .

t m

k

k

F d L         − −

=

= + +    

Proof. Consider a function 
0 0 0 1

ˆ ˆ ˆ ˆ( ) ( ( ), ( ))g F        = + − + −   and expand such a function into a Taylor series 

at a point 0. =  Then we obtain 

21
( ) (0) (0) .

2
g g g = +  

Note that since 
0

ˆ ˆ( , )   is the minimum of the function 
0( , ),F    then (0) 0.g =  Since   

2 2

0 0( ) ( )g     −= − +  

2 2 2 2

1 0

10

( ( ) ( )) ( ) ( ( , ) ) ,

t m

k k k

k

s s q s ds L       −

=

+ − + −  

where  
0 0 0 1

ˆ ˆ, ( ) ( ) ( ),s s s     = − = −    then   

1

2 2 2 2 2 2

0 0

1 0

1
(0) ( , ) ( ) ( ) .

2

tn

k k

k

g L s q s ds     − −

=

 = + +   

From here we obtain the necessary equality. □ 

 

Consequence 2. We can write sets ( )i  in the form  

 0 1 0 0 1 0
ˆ ˆ ˆ ˆ( ) ( , ) : ( , ) ( , ) .i iF F          = − −  −  

Proof. We obtain that at 1 =       

1
(1) (0) (0).

2
g g g= +  

Since 
0 1(1) ( , ),g F  =  from the fact that 1 0 0 1

1
ˆ ˆ(0) ( , )

2
g F     = − −  we obtain the necessary equality. □ 

 

Lemma 1. The following equalities hold 
1
2

0 0 2 0
( )

ˆ ˆ ˆ ˆmax ( , ) ( , ) ( ( , )) ,
i

iL L F


       


= + −  

1
2

0 0 1 0
( )

ˆ ˆ ˆ ˆmin ( , ) ( , ) ( ( , )) ,
i

iL L F


       


= + −  

0 0

1 0 2 01,2, min ( , ), max ( , ),i L L     
 

= = =  

 0 0 1 0( , ) : ( , ) 1 .F    =   

Proof. Obviously, if we make a substitution 
0 0 0 1

ˆ ˆ, ,     − = − =  we get the relation 

1

0 0 0
( ) ( )

ˆ ˆmax ( , ) max ( , ) ( , )
i i

L L L
 

     
 

= + =  
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1
2

0

0 0 0
ˆ ˆ ˆ ˆ( ( , )) max ( , ) ( , ),i F L L      


= − +  

where  1 0 1 0 0
ˆ ˆ( ) ( , ) : ( , ) ( , ) .i iF F        =  −  

We obtain similar relations for 0
( )

min ( , ).
i

L


 


 

Thus, in order to find predictive estimates, it is necessary to find values 
0̂  and ˆ,  as well as expressions for 

1  

and 
2 .  

Since 
0 0 1

ˆ( , ) min ( , ),Arg F     then these values can be found from the equation 

0 0 1

0

ˆ ˆ( , ) 0
d
F v v

d 

   
 =

+ +   

for arbitrary numbers 
0v  and functions 

1( )v t  integrable with the square on 
1(0, ).t    □ 

 

Lemma 2. The following equality is valid 

2

0 0 1 0 0 0

0

1
ˆ ˆ ˆ( , ) ( )

2

d
F v v v

d 

      


−

=

+ + = − +  

1

1

0

ˆ( ( ) ( )) ( )

t

s s v s ds + − +  

2

0 0 1

1

ˆ ˆ( ( , ) ) ( , ),
m

k k k k

k

L L v v    −

=

+ −  

where 

1

0 1 0 [0, ] 1

0

( , ) ( ) ( ) ,
k

t

k tL v v v s v s ds= +     is the characteristic function of the interval [0, ]kt . 

The proof of this Lemma 2 follows from the form of the functional 
0 1( , ).F       

 

Proposition 6. A pair of values 
0̂  and ˆ( )s  is a unique solution of a system 

2 2

0 0 0

1

2

0 [0, ]

1

ˆ ˆ ˆ( ) ( ( , ) ) 0,

ˆ ˆ ˆ( ( ) ( )) ( ( , ) ) ( ) 0.
k

m

k k k

k

m

k k k t

k

L

s s L s

      

      

− −

=

−

=


− + − =



 − + − =






 

Proof. We get these equations if we take into account the expression for the derivative of the function 
0( , )F    

obtained in the Lemma 2, as well as the arbitrariness of the number 
0v  and the function 

1( ).v s   

The uniqueness of the solution of these equations follows from the fact that the quadratic functional 
0( , )F    reaches 

a minimum at a unique point. □ 

 

Consequence 3. The following equality is valid 
1

2 2 2 2

0 0

1 1 1

ˆ ,
m m m

k k k k k

k k k

m x     

−

− − − −

= = =

   
= + −   
   

    

1 2

0 [0, ] [0, ]

1 1

ˆ ˆ( ) ( ) ( ) ( ) ( ),
k k

m m

k k t k k t

k k

s s x s s       − −

= =

= − + +   

where numbers , 1, ,kx k m=  can be found from the system of equations 

2

1

min( , )
m

j k k j k

k

x x t t  −

=

+ =  

2

1 1

ˆmin( , ) min( , ) , 1, .
m m

k k k j k j o

k k

t t t t j m  −

= =

= − =   

Proof. The system of linear algebraic equations with respect to variables 
kx  can be obtained if we put 

0

ˆ( ) .
kt

kx s ds=      

Note that in order to find the values 
1  and 

2  it is necessary to calculate 
0min ( , )L   and 

0max ( , )L   on the 

set  0 0 1 0( , ) : ( , ) 1 .F    =   

Since the minimum and maximum of these expressions are reached on the boundary of the set 
0 , there exist 

Lagrange multipliers 
1  and 

2  such that  

0 1 1
ˆ ˆmin ( , ) ( ( ), ( )),L L     =   
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0 0 2 2
ˆ ˆmax ( , ) ( ( ), ( )),L L     =  

where 
0

ˆ ˆ( ), ( )i i     are the extremum points of the function L
0 0 1 0( , ) ( , ) ( , )L F      = +  which can be found from 

the condition  

0

( )
0.i

t

dg t

dt
=

  

0 1 1, ( )v v g t = L
0 0 1

ˆ ˆ( ( ) , ( ) ),tv tv   + +  and Lagrange multipliers 
1 2,   can be found from the equation 

1 0
ˆ ˆ( ( ), ( )) 1.F     =  □ 

 

Let ( ) 0,u t =  
2 ( )t  be an unknown function with the form  

2

1

( ) ( , ( )) ( ),
m

k k

k

t g t g t  
=

= =
 

where ( )kg t  are known piecewise continuous functions, 
1( ,..., )Tm  =  is a vector of unknown parameters. Suppose that the 

values 
2 1( ) , 1, ,k k k ky x v k N t T = + =    are given, 

kv  are unknown values which belong to the interval [ , ].k k kI v v− +=   

 

Definition 3. The set   

2( ) { : ( ) , 1, }k k k kG v y x v k N  − +=  −  =  
is called the posterior set of parameters  . 

Introduce the values 
2 1

ln ln ,
( )

k k

k

y v
y

t

+

− −
=  

2 1

ln ln ,
( )

k k

k

y v
y

t

−

+ −
=  

1

( ) ,
k

k

t

g g d



 =   

1

0 ( ) .

T

t

g g d =   Let  +
 and  −

 denote the 

solutions of linear programming problems 

0 0 0 0
( )( )

max( , ) ( , ), min ( , ) ( , )
GG

g g g g
  

   + −


= =

, 

where ( ) { : ( , ) , 1, }k k kG y g y k N  − +=   = .  

Definition 4. The expressions  

2 2 2 2

2

( ) ( ) ( ) ( )
ˆ ( ) , ,

2 2
g

x T x T x T x T
x T 

+ − + −+ −
= =

 
are called the guaranteed predictive estimate (GPE) of the value 

2 ( )x T  and the guaranteed predictive error (GPEr) 

respectively, where 2 2 2 2
( )( )

( ) max ( ), ( ) min ( ).
GG

x T x T x T x T
  

+ −


= =  

  

We show that the following statement holds. 

 

Theorem. Assume that the values , 1,ky k N=  are given with their errors 
kv , which belong to the interval 

kI . Then equalities 

hold 

2

1
ˆ ( ) [exp ( ) exp ( )],

2
x T T T + −= +

 

1
[exp ( ) exp ( )],

2
g t T  + −= −

 

where 1 0
ˆ( ) ( )exp{( , ) ( )},T t g    + = +  1 0

ˆ( ) ( )exp{( , ) ( )},T t g    − = −  
1ˆ ( ),
2

  + −= +  0 0

1
( ) [( , ) ( , )].

2
g g   + −= −  

Proof. Note that inequalities 
2 ( )k k k kv y x v− + −   can be written as 

2 ( )k k k k ky v x y v+ −−   − . Since 
2 2( ) exp ( )k kx   = , 

then for ( )k   we obtain the inequality   

2ln( ) ( ) ln( ).k k k k ky v y v + −−   −
 

Taking into account that 
2 2 1( ) ( )exp( , )k kt g   =  we get that ( , )kg  satisfies the inequalities ( , )k k ky g y− +  .  

Moreover, 
2 2 2 2 1 0

( ) ( ) ( ) ( )
max ( ) max ( ) exp max ( ) exp ( )exp max( , )
G G G G
x T x T T t g

       
  

   
= = =

 and 

( ) ( )0 0 0 0 0 0
( )

1 1 ˆmax( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( ).
2 2G

g g g g g g
 

       + − + −


= + + − = +

  

Similarly, we obtain the expressions 
0 0

( )

ˆmin ( , ) ( , ) ( )
G

g g
 

   


= − , which means 2
( )

min ( ) exp ( ).
G
x T T

 
−


=  Taking these 

equalities into account, we obtain expressions for
2

ˆ ( )x T  and 
g . □ 



424 

 

 

 

Remark 4. It follows from Theorem  that in order to find the GPE 
2 ( )x T  and the GPEr 

2 ( )x T , it is necessary to find the GPE 

and the GPEr of the scalar product 
0( , )g  under the condition that the parameter   belongs to the set ( )G  . 

Next, we find approximate the GPE and the GPEr for the value ( , )kg . 

We approximate the set ( )G   by a set 2 2

1

ˆ( ) : ( ( , )) 1 ,
N

k k k

k

G y g q  − −

=

 
= −  
 

  where 
1

ˆ ( ),
2

k k ky y y+ −= +  
1

( ).
2

k k kq y y+ −= −   

 

Lemma 3. The following embedding holds ( ) ( ).G G −   

Proof. The inequalities ( , ) , 1, ,k k ky g y k N− +  =  can be written in the form ˆ ( , ) , 1, .k k ky g q k N−  =  From the condition 

2 2

1

ˆ ( , ) 1
N

k k k

k

y g q −

=

−   it follows the condition ˆ ( , ) ,k k ky g q−    which means that ( ) ( ).G G −  □ 

Further, let us introduce a matrix 2

1

.
N

T

k k k

k

P q g g−

=

=  Let us denote by ̂  the solution of the system of linear algebraic equations 

2

1

ˆ ˆ .
N

k k k

k

P q g y −

=

=  Assume that det 0.P   Then we show that the following statement holds. 

 

Proposition 7. Approximate guaranteed posterior estimate of the expression 
0( , )g  has the form 

0
ˆ( , )g . At the same time, the 

approximate guaranteed posterior error of such an estimate can be written in the form 
1 1

1 2 2
0 0

ˆ( , ) (1 ( )) ,H P g g F −= −
 

where 

2 2

1

ˆ( ) ( ( , )) .
N

k k k

k

F y g q  −

=

= −
 

Proof. Let ̂  denote the minimum point of the function ( )F  . From the condition ˆ( ) 0F    we obtain that ̂  satisfies the 

equation 2

1

ˆ ˆ
N

k k k

k

P q g y −

=

= . Note that the set ( )G   can be written as  ( ) : ( ) 1G F  =  . From the expansion in the Taylor 

series at the point ̂  we obtain that 

( )ˆ ˆ ˆ( ) ( ) ( ),( ) .F F P     = + − −
 

From here we get 

( )
( )( )

1 ˆmax ( , ) min ( , ) ( , ),
2 GG

g g g
  

  


+ =
 

( )
( )( )

1
max( , ) min ( , )

2 GG
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= − =

 

( ) ( )
1 1

12 2

( , ) 1

ˆ ˆmax ( , ) 1 ( ) ( , ) 1 ( ) ,
P

g F P g g F
 

  −


= − = −

 
which had to be proved. □ 

 

Remark 5. We can get a similar approximate estimate of the scalar product 
0( , )g  and its error when we approximate a set 

( )G   by a set  

2 2

1

( ) : ( ( , )) .
N

k k k

k

G y g q N  + −

=

 
= −  
 


 

In this case ( ) ( )G G + , and for the approximate guaranteed posterior error we obtain the expression  

( ) ( )
11

1 22
0 0

ˆ, ( ) .H P g g N F + −= −  

Remark 6. In the case, when the approximate estimates of the scalar product 
0( , )g  and the approximate estimates of errors 

( )   are given, then the approximate predictive estimate 
2 ( )x T  is given in the form 

( )( ) ( ) ( )

2

1
ˆ exp ( ) exp ( ) ,

2

H H Hx T T + −= +
 

where ( )

1 0( ) ( )exp{( , ) ( )},H

H HT t g    + = +  ( )

1 0( ) ( )exp{( , ) ( )},H

H HT t g    − = −  
0( , )Hg  is the approximate estimate 

to 
0( , )g , ( )H   is the approximate error of such an estimate. 

 Let us further consider the case when ( ) 0u t  , and ( )t  is a known function. 
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 Let's choose a function 
( )u t

 from the condition ( ), 1, ,k ky s k N= =  1 2 ... ,Ns s s  
 1( , ),ks t T

 ky are given 

numbers. 

 

 Proposition 8. The set U  for functions, for which the condition ( ), 1, ,k ky s k N= =  holds with given numbers 
ky , 

has the form 

0{ : ( ) ( ) ( )},U u u t u t v t= = +
 

where 
0

1

( ) ( ),
N

k k

k

u T x t
=

=   
kx  can be found from the system of linear algebraic equations 

1

, 1, ,
N

kj j k

j

b x c k N
=

= =  and ( )v t  

is an arbitrary function from space 
2 1( , )NL t s  that satisfies the condition   

1

( ) ( ) 0, 1, ,
Ns

k

t

t v t dt k N = =
 

wherе ( ) exp ( ) ,
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k

t

t d   =   

1
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Ns

kj k j k j

t

b t t t t dt =    1 1( ) ( ),k k kc y t t= − 
 

ln ,k ky y=
 

1

1

1, ( , )
( )

0, ( , )

k

k

k

t t s
t

t t s



= 


. 

Proof. Let us rewrite the condition ( )k ks y =  in the form 

1

( ) ( ) , 1, .
ks

k k

t

t u t dt c k N = =  The solutions of such a system have 

the form 
0( ) ( ) ( ),u t u t v t= +  where 

0

1

( ) ( ) ( ),
N

j j j

j

u t x t t
=

=   which had to be proved. □ 

 

4. Numerical Experiment 

 

Following the form of predictive sets, established by formula (3), the proposed algorithm is tested on synthetic data. 

We assume that the parameters of the model are stationary. We observe the state 
1x  of the first equation of system (1) on the 

interval [0,4]t , then on the interval [4,5]t  we plot the dynamics of the first equation of system (1), which we no longer 

observe, then on the interval [5,10]t  we predict 
2x  according to the specified parameters of our system (1). The experiment 

was conducted using Python’s libraries pandas, numpy, math and matplotlib.pyplot. 

In formula (3) we put   

1 0.1 = ,  

1 0.25 = , 

10q = , 

2 0.3 =  

0.3u = , 

0.5b = , 

0 0.001x− = , 

0 0.02x+ = . 

 

Let's find guaranteed estimates for the above parameters 

 

 
Fig. 1. Graph of system (1) behavior with the given parameters. 
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On Fig. 1 
1( )x t  is in blue, 

2 ( )x t  is in orange, observation of 
1( )x t  is in green. The black dashed curve shows the 

estimation error, the other black curve shows the predicted estimates of 
1x  and 

2x .  

 

5. Conclusions  

 

The research provides formulas for calculating predictive estimates of the number of individuals in the population 

with unknown non-stationary parameters included in the right-hand sides of special nonlinear differential equations. The 

obtained results can be applied in the tasks of analyzing the dynamics of the number of persons who received certain 

information, the dynamics of the number of persons with stress syndrome, the dynamics of the number of sick persons during 

epidemics. 
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